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ABSTRACT

We propose an automated region growing integrating adap-

tive shape prior in order to segment biomedical images. In our

work, the segmentation method is improved by taking into ac-

count a shape reference model by non-linear way. Thus, the

proposed method is driven by statistical data computed from

the evolving region and by a priori shape information given

by the model. An improvement of the method is proposed

by adapting automatically the degree of integration of shape

prior for each pixel of the image. The proposed method was

applied for segmenting 3D micro-CT image of mouse skull

in the framework of small animal imaging. The method gives

promising results and appears to be well adapted to the con-

text.

Index Terms— Shape, image segmentation, region grow-

ing, biomedical imaging

1. INTRODUCTION

Advanced radiological imaging techniques have been largely

employed to detect and quantify anatomical structures. The

wide variety of organs, noise and low contrast increase the

complexity for feature extraction and quantitative analysis.

So, the segmentation becomes an important step in medical

image processing. Classical segmentation algorithms are gen-

erally guided by forces resulting from image information and

a regularizing term [1]. The first force is computed from im-

age data whereas the second expresses some properties of the

region contour. Nonetheless, this information is not sufficient

to segment accurately occluded objects or objects with a par-

tially badly defined boundary. To face this problem, addi-

tional information like prior knowledge can be used to im-

prove the result of segmentation.

The integration of shape information in segmentation induces

the choice of a shape representation as a reference surface or

volume. In the current shape prior framework, the main ob-

jective is to tolerate a possible variation between the target

object and the model. The quantification of this variation im-

plies the definition of a distance between the evolving region

and the reference model. Cootes et al. [2] proposed the Active

Shape Model (ASM) where the shape model is represented by

a distribution of points around the reference contour. Gastaud

et al. [3] introduced a shape prior term as the Euclidean dis-

tance between the evolving contour and a reference model. In

[4], Cremers et al. presented a variational approach incorpo-

rating shape dissimilarity term into level set method. They

were integrating a symmetric pseudo-distance by using the

signed distance function characteristic used in level-set meth-

ods.

In this work, we propose to improve the performance of re-

gion growing approaches by taking into account shape infor-

mation. In this method, the target object is modeled by a

reference volume. An optimization step is applied to auto-

matically and locally balance the degree of shape prior and

image data information. The tests on 3D experimental data

will demonstrate that prior information enables achieving a

correct segmentation despite high noise or corruption.

2. METHOD

The main objective of this work is to integrate global shape

prior in the process of region growing. The reference model,

allows assessing a distance between the boundaries of the

evolving region and the reference model. This term will be

integrated in region growing as a shape prior.

2.1. Principle of region growing

In region growing approaches [5], the merge of a pixel to the

evolving region is governed by an aggregation criterion which

must be satisfied. At each step, a set of candidate pixels not

belonging but neighboring to the evolving region are tested.

Candidate pixels which satisfy the aggregation criterion are

added to the evolving region, which results in a new region.

We define a studied pixel as a pixel belonging to the evolving

region and located on its contour. Let us note ϕ (x) ∈ [0, 1]
the function used for assessing the aggregation criterion for a

pixel x. The aggregation criterion is true when:

ϕ (x) ≥ δ (1)

where δ ∈ [0, 1] is a given threshold. So, aggregation crite-

rion is a Boolean term based on a functional computed from
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region’s features. Initially, these features are estimated from

seeds and their neighbors and then, measured from the evolv-

ing region at each step.

2.2. Region growing integrating shape prior

Three dimensional region growing based on grey level inten-

sity has many advantages (free spreading of the segmentation)

but is sensitive to leaks. Our method [6] aims to improve

this technique by constraining the spread with shape prior.

In this work, the criterion is computed from two functions

ϕregion (x) and ϕshape

(
d
(
x,Γref

))
as expressed in the fol-

lowing equation:

ϕ (x) = ϕregion (x) × ϕshape

(
d
(
x,Γref

))
(2)

Where x is a pixel of image and d
(
x,Γref

)
is the normalized

signed Euclidean distance between a pixel x and the reference

contour Γref .

2.2.1. Statistic assessment

ϕregion (x) ∈ [0, 1] is the term related to image data. It mea-

sures the similarity between I (x) the grey level of a candi-

date pixel x and the distribution of grey levels in the evolv-

ing region Rin. In this work, we assume that the underly-

ing distribution of grey levels in Rin is approximated by a

gaussian distribution with mean μRin and standard deviation

σRin . ϕregion (x) represents the similarity between a candi-

date pixel and the gaussian distribution of the region. In the

iterative region growing process, μRin and σRin are estimated

at each step.

2.2.2. Shape prior assessment

ϕshape

(
d
(
x,Γref

)) ∈ [0, 1] expressed in equation 3 is

related to geometrical features of the evolving region. The

signed Euclidean distance function was introduced by Daniel-

son et al. [7]. By definition, d
(
x,Γref

)
is equal to the signed

distance from x to the nearest pixel belonging to the reference

contour normalized by the absolute value of the minimum

signed distance. Once and for all, d
(
x, Γref

)
is computed

for each pixel of the image and stored in a distance map.

A negative (resp. positive) value indicates that the pixel is

inside (resp. outside) the reference region. Instead of directly

using the normalized signed distance d
(
x,Γref

)
, we propose

to define ϕshape

(
d
(
x,Γref

))
as a non linear function of this

distance.

ϕshape

(
d
(
x,Γref

))
=

π
2 − tan−1

((
λ × d

(
x,Γref

))3
)

π
(3)

where λ is a tuning parameter. It can be noticed that

ϕshape

(
d
(
x,Γref

))
depends on the affine position of the

reference object. Therefore, a previous affine registration is

Fig. 1: ϕshape(d(x,Γref )) for different λ values.

required between the reference model and the original image.

As we can see on figure 1, when d
(
x,Γref

)
is negative i.e.

x is inside the reference object, ϕshape

(
d
(
x,Γref

))
takes

a value close to 1, thus helping the aggregation of x. When

d
(
x, Γref

)
is positive i.e. x is outside the reference object,

ϕshape

(
d
(
x,Γref

))
takes a value close to 0, thus acting

against the aggregation of x. Thus, parameter λ is related to

the magnitude of integrating shape prior in the segmentation.

3. ADAPTIVE SHAPE PRIOR

A major drawback of the previous criterion is the setting of

the global λ hyper-parameter. Thus, λ value must be exper-

imentally adjusted by trial and error. In order to overcome

the problem, λ value will be adjusted automatically for each

pixel of the image. We propose to use the Gradient Vector

Flow (GVF) and the growing direction
−→
D (x) of the region

growing for adapting shape prior in the segmentation.

3.1. Basic background

The GVF term provides two kinds of information: the prox-

imity of the nearest boundaries and the direction toward the

boundaries.

GVF −→v (x, y, z) = [u (x, y, z) , v (x, y, z) , k (x, y, z)] is de-

fined as the vector field that minimizes the following function:

ϕGV F =∫ ∫ ∫
μ (ηu + ηv + ηk) |∇f |2 |−→v −∇f |2 dxdydz

(4)

where ηu = u2
x + u2

y + u2
z, ηv = v2

x + v2
y + v2

z , ηk =
k2

x + k2
y + k2

z and f an edge map derived from the image. μ
is a noise control parameter. The main interests of the GVF

are its large capture field and its oriented field. These kinds of

information will be useful to compute the local λ value. The

growing direction
−→
D (x) is defined by the vector between a

studied pixel x and one of its candidate pixels xc ∈ Ω.
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3.2. Adaptive λ parameter

A link between λ value, GVF and
−→
D (x) is established from

the following observations shown in figure 2.

Firstly, if the GVF vector defined at one pixel and the growing

direction at the studied pixel have the same direction, image

data will be sufficient to drive the region growing, so λ can

be relaxed to limit the influence of the shape prior.

Secondly, with a low GVF vector or if the GVF direction has

an opposite direction to the growing direction, a high λ value

is necessary, because there is a lack of gradient information

which must be compensated by shape prior.

Fig. 2: Link between GVF field and Growing Direction.

In equation 5, we define PGV F (x) as the scalar product

between the GVF vector and the growing direction.

PGV F = −→v (x) .
−→
D (x) (5)

Growing direction vector and GVF vector are previously nor-

malized to limit PGV F (x), so that PGV F (x) ∈ [−1, 1]. We

propose to determine automatically λ value by taking into ac-

count the information given by PGV F (x). If a high GVF vec-

tor is defined at one pixel and the growing direction is similar,

PGV F (x) is close to 1 so λx value can be relaxed to limit the

shape prior.

The λx parameterization is obtained by equation 6.

λx =
(

λmin − λmax

2

)
× PGV F (x) +

λmax + λmin

2
(6)

where λmin and λmax are the bounds of λx value. For a high

PGV F (x), λx value is close to λmin i.e. integration of low

shape prior. For a low PGV F (x), λx value is close to λmax

i.e. integration of high shape prior. Thus, equation 6 allows

to adapt automatically the λx value according to image data.

4. EVALUATION AND APPLICATION

4.1. Evaluation on 2D synthetic image

We experiment the method on 2D noisy synthetic image in

order to assess the performance of our method. Figure 3(a)

represents the object of interest i.e. the targeted object.

Figure 3(c) represents the image to segment where Gaussian

noise with a standard deviation equal to 20 and corruption

were added. A leaking point appears at the bottom left of the

image and a second handle is added. Figure 3(b) displays the

reference model used as shape prior. We can notice that the

(a) (b)

(c) (d)

Fig. 3: Synthetic image: a) theoretical object, b) reference

model, c) image to segment, d) result image.

shape model differs slightly from the theoretical object.

Figure 3(d) shows the result of the method with adaptive

shape prior. The white contour delineates the segmented re-

gion. Without shape prior, the method fails to segment the

object by aggregating pixel in the wrong handle and spread

by the point leak.

4.2. Experimental 3D image presentation

The method was applied in the framework of small animal

imaging, provided by the small animal imaging facility An-

image. The aim of this application is the mouse phenotyp-

ing by intracranial cavity volume analysis (Figure 4(a)). We

tested the method on micro-CT 3D images of mouse skull ac-

quired with 35μm isotropic resolution.

The 3D reference model shown in figure 4(b) is manually

delineated by a medical expert from one volume defined as

the reference volume. The same reference model is used for

all segmentations. Before each segmentation, this reference

model is affinely registered using ITK, an open-source library

(http://www.itk.org/). The registration is computed from the

mean squared pixel-wise difference in intensity between two

images over a defined region. Poor matches between two im-

ages result in a large value of the metric. Then a seed is set

with a random position inside the studied skull to initialize

the process.

4.3. Results of adaptive λ parameter

We have tested our algorithm on four micro-CT images. In

figure 5, the white contours delineate the segmented regions.

From these examples, it appears that our method successfully
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Fig. 4: a) Initial 3D image of mouse skull, b) Reference im-

age.

extracts the region of interest from the images. In figure 5(c)

and figure 5(d), region growing has not spread toward the

leaking points located at the bottom of the skull. Our seg-

mentation achieves a good segmentation of objects: their

resulting shape is similar to the shape model even though the

image is occluded or has a highly variable contrast.

Adaptive λ value allows adapting automatically the shape

prior in the segmentation, by relying on image data. Fig-

ure 5(a) shows that our adaptive method takes mainly into

account image information when image data are enough rele-

vant to drive the segmentation.

On the contrary, a high shape prior is used when image data

are not significant or missing, thus avoiding leaking points

(see figure 5(c) and 5(d)).

(a) (b)

(c) (d)

Fig. 5: Segmentation results with adaptive λ value.

5. CONCLUSION

In this paper, we have proposed a new automated region grow-

ing integrating adaptive shape prior. This geometric prior is

based on a reference model which can more or less constrain

the process of region growing. The adaptability of the process

is computed from the Gradient Vector Flow and the growing

direction. This improvement increases the robustness of the

method and the quality of the segmentation results.

Our method has been tested and applied on micro-CT scans

of mice’s skulls in order to confirm the performance of shape

prior influence. Our experimental results are coherent with

the sought object, thus demonstrating the efficiency of our

method for automated segmentation.
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